I recently left my role as Head of Buildings for the National Trust after 15 years. But despite this experience, I still cannot fathom why pretty much all training for built environment professionals relates to new-build.

Nearly a quarter of all buildings in the UK – more than 6m – are traditional, that is, built before 1919, and they account for close to half of all construction work in hand at any time.

The consequences of the current educational emphasis are inevitable – inappropriate understanding of the differences between the performance of new and traditional buildings means that the latter will be treated incorrectly, leading to unnecessary and potentially serious damp issues that in turn will be addressed using inappropriate modern technology, exacerbating the original problems.

This situation will persist while mortgage lenders insist on using so-called specialist remedial damp companies to undertake inappropriate work.

Trailblazer training
The recently introduced apprenticeship levy could help to address training, yet numbers of apprentices have dramatically declined since its announcement.

I am involved in drafting Trailblazer frameworks, but it takes at least a year for the organisations involved to produce documentation, hence the delays in implementation. I hope this can be addressed quickly, so the levy can make the meaningful contribution of which it is capable.

It has also taken several years to deal with the incorrect U-value figures provided for standard assessment procedure ratings for solid walls. This has meant that ratings often bear little resemblance to actual performance, and has led to a general misperception that traditional buildings are inefficient. In turn, inappropriate measures have been taken to address issues hyped up by the sustainability agenda.

As with so many other things, simplicity is often the best approach; traditional buildings are in fact relatively straightforward to understand, and the most cost-effective measures such as roof insulation, draughtproofing, thermally lined curtains and provision of thermostatic radiator valves and control mechanisms will make the greatest difference, paying for themselves within a short period of time.

Understanding how to balance the need for ventilation and insulation to avoid condensation is key here, but again this is not taught at colleges.

European esteem
In my experience, European professionals hold the UK in the highest esteem in terms of our approach to our heritage. Our traditional building stock is of huge significance to our country and needs to be cherished as such, but proper understanding is vital.

BS 7913, the Guide to the Conservation of Historic Buildings, was revised in 2013 and offers excellent advice for anyone working on or involved with traditional buildings. Yet the vast majority of potential users – which includes some conservation graduates and professionals – won’t even know it exists.

We need our colleges to embrace the correct approach to traditional buildings in their curriculum, and to bring BS 7913 into the mainstream. Only then can we stop treating everything as new-build, and secure the future and reputation of the whole construction sector.
Conducting quinquennial inspections of historic buildings requires particular skill and experience, as Jonathan Taylor details

Five-year itch

The requirement for fabric inspections to be carried out every five years – quinquennially – is commonly associated with church buildings, but applies to all types of historic building.

Programmed inspections’ importance is set out in BS 7913: 2013, Guide to the Conservation of Historic Buildings, with section 6.2 of this stating that “It is best practice to undertake planned inspections and surveys at intervals of four or five years... Programmed surveys and inspections provide a basis on which to monitor condition, help to determine priorities and programme work which is an essential part of properly managing historic buildings.”

The reliance on quinquennial inspections varies according to the scale, complexity, use and age of the building. One that is small and easily accessible may be inspected seasonally as part of the regular routine of maintenance and repair, with specialists brought in to inspect only when problems arise.

However, for many buildings it is essential to plan inspections according to a routine, with an established procedure for assessing the whole fabric, in particular the envelope, to identify and record problems that have developed since the previous inspection, and to establish priorities for repair. A four- to five-year cycle is generally considered to be the minimum needed to spot problems before significant damage occurs.

From the pulpit

The Church of England introduced quinquennial inspections as a statutory requirement in 1955 through the Inspection of Churches Measure (http://bit.ly/2COjBKQ), revised in 1991 and currently being further refined to ensure that the process is better understood and more consistently followed. Most other denominations, and indeed many secular organisations, now adopt a similar approach to inspections.

Such inspections aim to document:

- the general condition of all parts of the building, in comparison to its condition at the previous inspection
- the progress made on repairs carried out since that previous inspection
- any further repairs or investigations needed and their priorities, which may be:
 - **a. immediate** – usually for safety reasons
 - **b. urgent** – work that should be carried out within a specified period, of up to 18 months
 - **c. necessary** – work that should be carried out before the next inspection
 - **d. desirable** – work that is not strictly necessary but would enhance the building, or which is likely to become necessary after the next inspection.

The importance of ensuring that quinquennial inspections are carried out by architects and surveyors who specialise in the conservation and repair of historic buildings cannot be overemphasised. Historic and traditional structures deteriorate in a manner that is very different from modern buildings, and only a professional who specialises in such buildings can be certain of correctly distinguishing defects that require attention from those that are historical and no longer a concern or are the cosmetic result of the ageing process. Incorrect diagnosis of a problem can result in the symptoms being treated while missing the cause. Poor understanding and incorrect specification often exacerbates decay.

BS 7913: 2013 states that historic building surveys and inspections should be “performed by competent persons with knowledge of traditional materials, construction techniques and decay processes”. Historic England’s *Repair Grants for Heritage at Risk: Guidance for Applicants* (http://bit.ly/2HT8WT4) goes further: “We will give a grant only if you employ a competent professional with relevant specialist conservation knowledge, ability and experience ... For most projects, the main professional advisor must ... be an architect, a chartered architectural technologist, or a chartered building surveyor who has conservation accreditation from a recognised body”.

Where historic buildings are concerned, successfully identifying the cause of a problem depends on a thorough understanding of the way traditional materials and structures work, and in particular on identifying the weak points of the building in question. It is therefore vital that specialists remain up to date; conservation research is continually breaking new ground, and some assumptions made not so long ago are now being shown to be false. For example, recent research by Historic England has demonstrated that some hydraulic lime mortars can continue to strengthen for months and even years, and in some cases are almost as hard as the Portland cements they replaced.

Qualifications

Where historic buildings are concerned, the most reliable indicator of an architect’s or surveyor’s suitability is their accreditation in conservation by a relevant professional body. RICS for instance has an established accreditation system for conservation specialists, which ensures that they have appropriate training, are experienced in the field and keep up to date.

For architects, the situation is a little more complicated. The Royal Incorporation of Architects in Scotland (RIAS) established an accreditation system in 1995 along similar lines to RICS; but offering two levels of accreditation: standard, for those architects “competent in working in the historic built environment”, and advanced, for “recognised conservation specialists”.

However, the Royal Institute of British Architects (RIBA) was initially hostile to the idea, adhering to the belief that all architects were capable of deciding whether or not they had the skills required to work with historic buildings. Architects in England and Wales therefore set up their own independent system of Architects Accredited in Building Conservation, the AABC Register, in 1999. This now operates in parallel with the RIBA’s register, introduced more recently once it had belatedly recognised the need for such a system. Both registers adopted the RIAS approach of two-level accreditation. For grant-aided work Historic England recognises architects accredited at the highest level, whether category A on the AABC Register or Specialist
Conservation Architects on the RIBA’s, as well as all surveyors accredited in conservation by RICS.

The skill set required depends to a large degree on the type of building, its complexity and the significance of the fabric. The Church Buildings Council (CBC) of the Church of England provides the following criteria for assessing the suitability of an architect or surveyor for the role of inspector.

- **Major churches and greater churches**, as defined by the CBC, entail proven experience of working with such large or highly significant and complex church buildings, at least at a junior level under a more experienced professional, and experience of working on grade I or II* listed church buildings when working in a sole capacity. Relevant accreditation would normally be required as well.
 - **Grade I or II* listed churches** require proven experience of work in a sole capacity with listed buildings, and work with these more highly designated church buildings at least at a junior level under a more experienced professional, though experience in sole capacity is preferred. Relevant accreditation would normally be required.
 - **Grade II churches** require proven experience of work in a sole capacity with listed buildings, and experience with listed church buildings at least at a junior level under a more experienced professional is preferred. Relevant accreditation would normally be recommended.
 - **Unlisted churches** require no specific prior experience, but evidence of supervision from a professional with experience of church buildings is recommended. For certain buildings, evidence of having worked with traditional materials may be required.

Since the Inspection of Churches Measure 1955 was amended by the Care of Churches and Ecclesiastical Jurisdiction Measure 1991 (http://bit.ly/2HT9pQ), chartered surveyors and registered architects have been eligible for appointment by the Church of England to carry out quinquennial inspections. Inspectors are approved and appointed as individuals rather than as firms. Although appointments are made by the local parochial church councils, the approval of the Diocesan Advisory Committee for the Care of Churches is required, as outlined in the Church of England’s ChurchCare guidance note The Quinquennial Report (http://bit.ly/2EYLE0n).

In some other denominations, the diocesan authority appoints an individual or firm to carry out quinquennial inspections for all churches or places of worship in its jurisdiction. However, in dioceses that are large and spread out, this can be impractical. Approaches can also vary between dioceses within a denomination. In the case of the Roman Catholic Church, for example, each diocese is autonomous under the authority of the bishop, and the Catholic national Church Arts, Architecture and Heritage Committee operates in an advisory capacity only.

Other criteria

Accreditation by one of the relevant bodies – AABC, RIAS, RIBA or RICS – provides some assurance that a professional has the experience and knowledge required to assess historic building fabric and investigate defects. However, there is no such thing as a standard historic building: a medieval timber-framed hall, a largely subterranean Georgian ice house and a Victorian train station each require a different understanding of the way the materials involved work together and the way they are likely to have aged. So to find the right specialist to carry out quinquennial inspections, it may help to consider a broad range of related criteria.

- **Relevant experience**: most relevant will be that gained by a professional carrying out quinquennial inspections for other buildings of a similar period, size and complexity. However, it is widely recognised that there is a need to bring...
new, less experienced people on board to carry out inspections so they can gain practical skills and insights, and some degree of flexibility is therefore important. ● People skills: conservation requires professionals to work with conservators and other specialists as part of a team, so the ability to collaborate with others rather than simply instruct them is crucial. Success depends on trust, good communication and seamless cooperation at every level. ● Membership: in addition to membership of the architects’ and surveyors’ professional bodies and their accreditation systems, affiliation with other professional bodies will be relevant. Structural engineers may be accredited to work on historic buildings through the Conservation Accredited Register of Engineers (CARE), and a broad range of heritage professionals are also accredited by the Institute of Historic Building Conservation (IHBC). However, as full members of the IHBC are accredited as heritage professionals rather than as conservation surveyors or architects, this alone does not indicate that the person holds the required skill set for undertaking quinquennial inspections. For church appointments, membership of either the Cathedral Architects Association or the Ecclesiastical Architects and Surveyors Association is also particularly relevant. ● Training: a master’s degree in building conservation or a related topic is the most commonly recognised route to accreditation, but the Society for the Protection of Ancient Buildings’ Lethaby scholarship is also held in the highest regard. A wide variety of CPD courses are run by the professional and statutory heritage bodies, and a full list of short, undergraduate and postgraduate courses can be found at www.buildingconservation.com.

Perhaps the most important skill of any architect or surveyor, whatever their level of accreditation, is to know their limitations and when to seek the advice of other specialists. In particular, the skill sets of structural engineers, conservators and craftspeople are often necessary for specialist investigations or to understand the implications of an apparent defect. All members of the investigatory team will need historic building experience. The two main accreditation systems in these fields are CARE and the Professional Accreditation of Conservator-Restorers. In addition, the Chartered Institute of Building launched a certification scheme for its members last year, and a growing number of craftspeople now carry Construction Industry Training Board Heritage Skills cards.

While accreditation is an excellent guide to expertise in specific areas, it is important that it is not seen to entitle the holder to work on all types of historic structure and fabric without question. All specialists have their limitations, and the success of larger and more complex projects inevitably depends on teamwork, with all team members contributing and sharing knowledge. ●

Jonathan Taylor is Editor of The Building Conservation Directory and other conservation publications, and a founding director of Cathedral Communications Limited jonathan@buildingconservation.com

Glass for period windows

The London Crown Glass Company specialises in providing authentic glass for the windows of period buildings. This glass, handblown using the traditional techniques of the glass blowers, is specified by The National Trust, the Crown Estates and indeed many others involved in the conservation of Britain’s heritage. Specify authentic period glass for your restoration projects.

THE LONDON CROWN GLASS COMPANY
21 Harpsden Road, Henley-on-Thames, Oxfordshire RG9 1EE
Tel 01491 413227 Fax 01491 413228 www.londoncrownglass.co.uk

Are your reports getting typed on time? Your solution is simple...

As easy as 1, 2, 3
1. Dictate
2. Upload
3. Work transcribed
Recommended by surveyors Nationwide because...

- Pay-as-you-go UK based company with access to British typists with a wealth of experience in the surveying and property sector.
- We work with your preferred system such as Quest, iSURV, Val-Ex etc., or within your own customised templates producing complete building surveys and home buyer reports.
- Total flexibility with no contract or monthly fees.

SSL secure data transfer (as used by all the major online banks).
Record and send audio files worldwide using an iPhone, Android or digital dictaphone.
Same lead typist with back up always available.
Your own dedicated Account Manager.

01366 348088 sales@outsec.co.uk www.outsec.co.uk

Our most important client is... YOU!
Earth-built structures were once a ubiquitous feature of both rural and urban settlements in Britain. Although they went out of fashion in the 18th and 19th centuries, many such structures still exist and rely on conservation to prevent their decay and eventual loss.

Composition

Earth can be found in a variety of uses in historic buildings: as a mortar, as a plaster or as a mass walling material. In the latter context, as we will detail here, its use can go by a few different names, such as cob, clom, dabbins or mudwall.

The earth itself would typically have been derived from locally sourced subsoil, mixed with fibrous material such as straw or hair and gravel to act as an aggregate. There are numerous variations in the proportions of these, and during manufacture water may also have been added to improve the workability of the material.

The main factor in the decay of mass earth walls is water, which in excess can cause the earth to lose much of its strength, turning it into a putty-like material. Should this occur, the wall could react in a number of ways.

First, the cohesion between a render and the wall could be lost, causing the render to fall off in excessively damp areas. If the wall becomes damp at the base, it could also lead to the development of a bulge. Most catastrophically, should the wall become saturated then it could slump.

Such damage can be avoided through a consistent maintenance regime that minimises water ingress, for example the regular clearing of rainwater goods.

Installation and identification

The construction of a mass earth wall varied from location to location across Britain, depending on local traditions and customs. Wattle and daub is perhaps the best-known method, and used a wooden lattice, the wattle, to which the sticky earthen material was applied, or daubed.

Mudwall building by contrast used a base of boulders on top of which lifts of courses were laid, while clay and bool construction included layers of rounded stones laid in between courses. Shuttered earth walls were constructed using two shutters of wood, spaced apart with earthen materials built up between them; once these were completed, the shutters were then removed.

Although earth buildings were once very common across Britain, throughout the 18th and 19th centuries they became associated with perceptions of poverty, and as such other building materials came in to fashion.

It is extremely difficult to identify a mass earth wall in an historic building for many reasons. Many such walls have been retrofitted with a skin of a material thought to be more durable, such as brick or stone. Similarly, harling across the face of an earth wall makes visual identification problematic. Where a render has failed, however, this will expose the original walling material. Earth walls can sometimes develop a slope over time, and this can act as another indication of their presence. In some locations, a base course of boulders can signal that there is an earth wall.

The main factor in the decay of mass earth walls is water, which in excess can cause the earth to lose much of its strength, turning it into a putty-like material. Should this occur, the wall could react in a number of ways.

First, the cohesion between a render and the wall could be lost, causing the render to fall off in excessively damp areas. If the wall becomes damp at the base, it could also lead to the development of a bulge. Most catastrophically, should the wall become saturated then it could slump.

Such damage can be avoided through a consistent maintenance regime that minimises water ingress, for example the regular clearing of rainwater goods.

Decay and degradation

The complexities involved in identifying earth buildings mean that there are likely to be more structures of this type surviving in Britain than is commonly realised and recorded.
Rendering it possible

Ensuring conservation skills are retained and shared is just as important as protecting historic buildings, maintains Marcus Poole

The Apothecaries Hall in Blackfriars is the oldest extant livery hall in the City of London, and the central courtyard of this scheduled ancient monument (http://bit.ly/2otIYNN) has recently undergone a complete refurbishment following extensive dry rot.

Preservation
The external walls of the courtyard had originally been completely rendered with ashlar lines to give the appearance of stonework. In addition, there are stucco cornices, pediments and window surrounds on the Great Hall elevation. At a high level on the Great Hall external elevation there is also a plaster crest of the Apothecaries' coat of arms, and a large timber crest above the main entrance door that was reputedly taken from a barge where they stored some more volatile chemicals.

Originally appointed as property and construction consultants, we at Ingleton Wood were initially asked to confirm the structural adequacy of a timber bressumer in the Warehouses, which had previously suffered from minor rot.

However, investigation revealed that there was an extensive and active dry rot that had spread across much of the external wall. The cause was found to be a leaking downpipe, with water soaking through the render and saturating the external wall.

Following the downpipe repair and treatment of the rot, the external render was removed locally by a combination of hand and mechanical tools to allow the wall to dry. It was then discovered the original lime render had been given an overcoat of, or in many areas replaced by, a hard cement render. Further investigations found other downpipes were also leaking and the cement render was allowing water to enter the building through cracks and holes, trapping it in the walls. As a result, there were further outbreaks of dry rot elsewhere, as well as potential for beetle attack.

We recommended that the cement render should be completely removed and replaced with lime render, which would allow the external walls to breath and dry out naturally. Further investigations also showed that water had seeped behind the paintwork on the cornices, timber window sills and stonework, and they too had become saturated. We recommended the cornices and stonework were stripped and redecorated in a mineral-based paint which would be breathable but still be durable, rather than the modern paints that had previously been used.

The paintwork was removed by use of chemical poultices on the more delicate cornices. Prior to repainting the top surface of the cornices, a thin lime render coat was applied to improve water-run off. However, it was decided not to remove the previous cement repairs or try further repairs to the moulded underside to prevent the possibility of further damage.

Historic collaboration
The active involvement of Historic England was particularly important, not just as a statutory consultee but also for the wider input and advice it could offer.

As well as setting conditions before it could approve our render removal methods and specification of new materials, the organisation also asked for a detailed recording of the brick structure below the render, requested that stonework and lead downpipes should not be repainted, and required that it be consulted on all colours and finishes.

Hall history
The Worshipful Society of Apothecaries was founded in 1617, but can trace its origins back to 1180. The hall itself was bought in 1632 and had to be largely rebuilt following the Great Fire of London in 1666, incorporating the medieval remains into Thomas Locke’s new designs.

The west and south ranges, known as the Houses and the Warehouses respectively, were added between 1780 and 1786, and the footprint remains largely unchanged to this day, with the courtyard accessed from Blackfriars Lane. Further alterations were carried out in 1828–30, the 1920s and 1983–7, but generally the hall’s appearance has altered little since the late 18th century.
the original colour scheme of the coat of arms beneath the layers of overpainting by using spectral analysis of paint samples. For example, the background colour was found to be originally a rich, warm blue not the cool green-blue that was on show.

Rediscovery by refurbishment

It was clear that, over the centuries, the courtyard had undergone many alterations, and it was important to identify when these had occurred so the conservation team could determine how defective elements might be repaired or replaced. As no official records were available, the team had to rely on a mixture of anecdotal evidence and paintings and photographs from the 1800s to the 1980s. The early paintings and sketches often contradicted each other. For example, the oldest paintings showed that the external walls of the courtyard were rendered with small overhangs, while later paintings suggested that the external walls were flush brickwork. Meanwhile, the pitch of the external staircase varied considerably between paintings, and windows and a decorative plaque appeared and disappeared. It was impossible to establish what was accurate and what was artistic licence.

It was only once the render had been removed that it became evident that the paintings were largely correct and could provide a valuable documentation of the changes over time. For example, the Great Hall elevation was shown to be gauged brickwork that had been rendered over at a later date, and that the staircase had evidently been rebuilt in the post-war period.

Removing the render also uncovered interesting and unexpected items, such as Roman tiles that had been used to line some external window reveals and some cornices formed from Higgins patent render, a rare and briefly fashionable material of the late 18th century comprising sand, lime and bone ash. It also became evident that although the windows were well maintained, much of the timber and stonework sills, cornicing, downpipes and copings had been patch-repaired and replaced with modern materials. While this had presumably resolved immediate issues it had also contributed to the long-term deterioration of the building. In particular, the cement render had been laid so thick that the surrounds of the large circular windows no longer stood proud of the wall faces and did not channel water away, so each had severely rotted at the bottom where this pooled.

Shared expertise

The refurbishment could not have succeeded without all parties working in partnership and sharing their expertise. The courtyard is perhaps now in the best condition it has been for more than 200 years, while the change in the colour scheme has given – perhaps for the first time in a century – a view of the space as it was originally meant to be seen.

However, it also understood that the overall appearance of the courtyard was important to the Apothecaries, and withdrew its requirement for the downpipes and stonework sills to be left unpainted once finding out these had been extensively patch-repaired in the past. Input was also received from the Heritage of London Trust, which helped fund the timber coat of arms’ restoration.

After consultation, a natural hydraulic lime render was selected. Historic England advised that white render and blue windows were the most appropriate colour scheme for buildings of this age, enhancing the courtyard’s appearance by improving contrast and adding depth to the reliefs and ornamentation.

The specialist knowledge of the principal contractor, DBR Conservation, was also integral to the success of the project, in particular restoring the lost detail on the plaster and timber coats of arms. It managed to establish and restore

The Worshipful Society of Apothecaries’ coat of arms [above] before restoration work was carried out [top, left and right]
Historic England issues new curtilage guidance

Historic England has revised its guidance on curtilage – and this could affect conservation work, as the existence of an unlisted building within the curtilage of a listed one determines whether it, too, should be treated as listed.

It should be noted that curtilage is neither the legal boundary nor the extent of setting. In the revised guidance, it is defined as “an area of land around a listed building within which other buildings pre-dating July 1948 may potentially be considered listed. Not all buildings will have a curtilage. With those that do there will be cases where the extent of the curtilage will be clear (such as a garden boundary), but in others it may not be as clear [as] each case will always be a question of fact and degree.

“A decision-taker may take the following factors into account in assessing the matter: i) the physical layout of the listed building and the [other] building; ii) their ownership past and present; and their use or function past and present, specifically whether the building was ancillary (i.e. subordinate to and dependent on) the purposes of the listed building at the date of listing” (http://bit.ly/2qiWvQ7).

Curtilage has been interpreted through a succession of legal cases over the years. Sutcliffe v Calderdale BC [1982] 46 PCR 399 laid down the original principles, while Burford v Secretary of State and Test Valley [2017] EWHC 1493 found that land in common ownership with a house was not within its curtilage because it was not attached to the dwellinghouse and did not form one enclosure with it. The updated guidance from Historic England follows this case.

Welsh planning proposals criticised

The Law Commission is currently reviewing the operation of planning legislation in Wales.

In November 2017 it published a consultation paper, Planning Law in Wales (http://bit.ly/2BmKwlm), paragraph 3.49 of which proposes to merge listed building consent and conservation area consent with planning permission.

This, however, has drawn objections from nine heritage organisations including the Society for the Protection of Ancient Buildings and Save Britain’s Heritage, which believe that it would reduce protection for historic buildings.

HLF reports grant boost

The Heritage Lottery Fund (HLF) recently commissioned an evaluation of the impact of funding that was awarded through its Heritage Grants Programme between 2002 and 2007.

The subsequent report says the programme has been particularly effective at developing heritage sites into successful visitor attractions, thereby increasing public involvement. Moderate to high increases in visitor numbers were reported in 58% of projects as a direct result of HLF investment, and heritage volunteering has also increased, with 45% of projects reporting a sustained growth in numbers for at least five years after project completion.

In addition, the programme has generated economic benefits. For instance, 60% of projects that provided employment data reported the creation of new jobs, six case studies of economic impact showed a gross value added of £8.4m annually, while 11 projects reported regeneration impacts.

http://bit.ly/2G7PfI4

Consultation opens on revised planning policy

A draft of the revised National Planning Policy Framework (NPPF) was published for consultation at the beginning of March and this remains open until 10 May. Although the historic environment chapter remains largely unchanged, the wider context in which it sits has altered.

In paragraph 8c, for instance, the definition of the environmental objective, new wording about making effective use of land has been added, while the NPPF’s 12 core planning objectives, one of which is conserving heritage assets, have been removed.

Some changes have also been made to the list of policies in footnote 7 that would restrict development, with more emphasis placed here on natural heritage.

http://bit.ly/2FoF5U0

Laser-guided advice updated

Historic England has revised guidance first issued in 2007 with the publication of a third edition of 3D Laser Scanning for Heritage. This covers the technology and procedures, specifying and commissioning surveys, case studies and sources of advice.

It has also issued a second edition of The Setting of Heritage Assets, previously published as Seeing the History in the View. It is sensible that views and settings are considered together because the latter are not always properly understood by practitioners, so this revised guidance is highly recommended.

The **only** BBA certified and guaranteed gutter refurbishment system

Plygene® Gutterline. Engineered to guarantee leak prevention

We manufacture the non-bonded, bespoke Plygene Gutterline system. It is specifically engineered to meet the many challenges of the gutter environment in the industrial and commercial sectors.

How we support you:
- Site survey
- Specification
- 25 year single point guarantee
- Site audit and inspection
- Quality approved Trained Contractor network

Our CPD: Why gutters fail and the options to repair, replace and refurbish: A specifier’s guide

As part of its specification support service the Sharman’s CPD “Why gutters fail and the options to repair, replace and refurbish: A specifier’s guide”, is interactive in its design. The programme explores the common causes of gutter failure in the commercial and industrial sectors and the options to repair, replace and refurbish. It finishes with a practical gutter network demonstration using a purpose made rig.

Recognised by RICS and 1600 other professional bodies
- Accrue points
- Certificate awarded

Call: 01298 812371
Visit: hdsharman.co.uk/cpds
Commercial / Industrial Roofing
Accredited CPD Sessions

Designed and presented by Building Surveyors

Based on 40 years building surveying experience, our Accredited CPD sessions will help you with dilapidations, condition and acquisition surveys.

Conducted nationwide at your premises:

Asbestos Roofing
Examines fault diagnosis, replacement, over-cladding patch repairs, coating solutions and warranties.

Cut Edge Corrosion and Metal Roofing
Challenges conventional thinking with an interactive Assessment of what’s actually happening on metal roofs.

For more information call

0121 709 5352

Liquasil works. Guaranteed!

Asbestos Roofs
Asbestoseal – the only BBA Approved asbestos roof coating on the market.

LATENT DEFECTS GUARANTEE

Metal Roofs
Complete metal profiled roof refurbishment system with unique hardened silicone technology.

LATENT DEFECTS GUARANTEE

Cut Edge Corrosion
Finally, a cut edge corrosion solution that’s easier to apply and economical to use.

LATENT DEFECTS GUARANTEE

Liquasil Limited
Unit 3 Radway Industrial Estate
Radway Road, Solihull, West Midlands B90 4NR

t 0121 709 5352
e info@liquasil.com

www.liquasil.com