International Property Measurement Standards: RICS data standard
Version 2.1 [September 2019]
Andrew Knight
IPMS RICS data standard

Version 2.1 [September 2019]
Contents

1 Introduction .. 1
 1.1 Application ... 1
 1.2 RICS data standards ... 1

2 Changes made in this version of the IPMS RICS data standard 3

3 Use of enumerations ... 6

4 Overview of the IPMS RICS data standard ... 7
 4.1 The IpmsMeasurement element ... 7
 4.2 The IpmsMeta element ... 8
 4.3 The FloorPlan element ... 10
 4.4 The Compliance element ... 10
 4.5 The MeasuredProperty element .. 12
 4.6 The Floors element ... 14
 4.7 The FloorLevels element ... 14
 4.8 The MeasuredComponents element 16

5 Measurements in the data standard ... 17
 5.1 IPMS and non-IPMS measurements ... 17
 5.2 IPMS3 measurements ... 18
 5.3 Non-IPMS measurements ... 19
 5.4 Areas reported separately ... 20
 5.5 Alternative measurements ... 21

6 File references .. 22

7 Self-documenting schema ... 23

8 Address types .. 24

9 Sample data file .. 27
1 Introduction

1.1 Application

The International Property Measurement Standards RICS data standard (IPMS RICS data standard) is an XML schema enabling users to capture, denote and share IPMS measurements of buildings. It is compatible with:

- *RICS property measurement* (2nd edition), RICS professional statement and

The data standard supports the additional measurements required for *IPMS: Industrial Buildings*, together with the new component areas in *IPMS: Industrial Buildings* and those currently proposed for *IPMS: Retail Buildings*. This document will be updated over time to comply with other IPMS standards, including *IPMS: Retail Buildings*, as they are published.

The schema is extensible and flexible. Versions 2.0 and 2.1 of the data standards include enhancements to support more explicit and detailed reporting of:

- limited use areas
- areas included within IPMS but stated separately
- areas excluded from IPMS but stated separately
- additional, alternative units of measure, such as car parking spaces, and
- dual reporting with pre-existing, local measurement standards, such as *Code of measuring practice* (6th edition), RICS guidance note (COMP6), the BOMA floor measurement standards, the HKIS Code of Measuring Practice, the PCA Method of Measurement, etc.

1.2 RICS data standards

All RICS data standards are implemented via XML .xsd files. These reference shared .xsd files containing definitions of common types and enumerations that are used in one or more of the current data standards, namely:

- IPMS
- *International Construction Measurement Standards: Global Consistency in Presenting Construction Costs (ICMS)*
- *International Land Measurement Standards: Due Diligence for Land and Real Property Surveying (ILMS)* and
- *International Valuation Standards (IVS)*.

The RICS data standards should always be implemented with reference to the standards themselves and the relevant RICS professional standards and guidance.
Complete documentation of all the elements and enumerations can be found in the IPMS RICS schema, which is available on the RICS Data Standards page of the RICS website. RICS can provide support on the implementation of the XML schemas and mapping between IPMS and other measurement standards. For further information and technical details, please contact datastandards@rics.org.
Changes made in this version of the IPMS RICS data standard

The key changes that have been made in this version of the IPMS RICS data standard are shown in the following table.

<table>
<thead>
<tr>
<th>Element</th>
<th>Change made</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>Descriptions have been added for proposed component areas for IPMS: Retail Buildings.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>An option has been added to elements throughout the schema to report additional attributes [##any], elements [AnythingType] and additional documents, files, etc [AnnotatedDocumentType].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>An optional AlternativeMeasurement element has been added to all measurements.</td>
<td>This enables functional units to be expressed in addition to areas.</td>
</tr>
<tr>
<td></td>
<td>Enumerations have been added for ISO country codes, along with a full range of units of measurement.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The uniclassCategoryType attribute and enumeration have been added for space and element codes at component level. See section 4.8 for further information.</td>
<td></td>
</tr>
<tr>
<td>Compliance</td>
<td>An additional optional ProfessionalStandard element has been added.</td>
<td>This element enables the user to include details of the standard used.</td>
</tr>
<tr>
<td></td>
<td>The SupportingDocumentation element has been renamed as OtherDocumentation and re-ordered.</td>
<td></td>
</tr>
</tbody>
</table>
Compliance (continued)

Additional optional elements have been added:
- Disclosures
- Organization
- OrganizationAddress
- OrganizationContactDetails
- OrganizationRegulatoryID
- PreparedBy
- PreparedByQualifications
- PreparedByRegulatoryID
- CertifiedByQualifications
- CertifiedByRegulatoryID

These elements enable the user to add further details about the organisation and contact(s) that have prepared or signed off the measurement.

InternalFile

See chapter 6 for further information.

The attributes encoding and path have been added.

IpmsMeta

See section 4.2 for more information.

The sequence in which the Entity element appears has changed.

Additional optional elements have been added:
- MaterialAssistance
- PreparedForClients
- OtherIntendedUsers
- MaterialConnection

These elements allow the user to add further details about third-party assistance, who the report was prepared for, the intended users of the report and any material pre-existing connection between the measurer and the asset(s).

Additional optional elements have been added:
- ReportStatus
- ReportRevisionNumber

These elements allow the user to include drafts and report revisions.

An option to report volumetric measurements, supported with the corresponding optional VolumeUnitOfMeasure element, has been added.
IpmsMeta (continued)

Additional optional elements have been added:
- *InformedConsent*
- *AdditionalServices*

These elements enable the user to include information about any informed consent around conflicts of interest and any services requested as part of the measurement exercise.

An additional optional *TermsOfEngagement* element has been added.

This element enables the user to capture an overall summary of the measurement terms and conditions, etc.

PropertyType

An optional *GUID* element has been added.

This element enables the user to record a unique identifier for a property.

Table 1: Changes made in this version of the IPMS RICS data standard
3 Use of enumerations

The data standard provides lists of known values for many attributes and elements where a list or set of data may be chosen from, such as IPMS component area definitions. In this instance, the enumeration, found in the enumeration schema, is defined by the type `KnownIpmsComponentAreaEnum`. This enumeration contains the current list of known component areas from ‘A’ to ‘H’. These lists are useful for software developers.

It should be noted that the schema enables extensions of this data via the use of `IpmsComponentAreaType`, which is defined as the superset of a string, and `KnownIpmsComponentAreaType`. Therefore, any string value is technically allowed. This pattern is followed throughout the data standard and serves to provide users with indications as to what values should be expected, while also providing them with the freedom to submit any data.

Code block 1: The use of enumerations in this data standard

```xml
<xs:simpleType name="KnownIpmsComponentAreaEnum">
  <xs:restriction base="xs:string">
    <xs:enumeration value="A"/>
    <xs:enumeration value="A1"/>
    <xs:enumeration value="A2"/>
    <xs:enumeration value="B"/>
    <xs:enumeration value="B1"/>
    <xs:enumeration value="B2"/>
    <xs:enumeration value="B3"/>
    <xs:enumeration value="C"/>
    <xs:enumeration value="D"/>
    <xs:enumeration value="E"/>
    <xs:enumeration value="E1"/>
    <xs:enumeration value="E2"/>
    <xs:enumeration value="F"/>
    <xs:enumeration value="G"/>
    <xs:enumeration value="H"/>
  </xs:restriction>
</xs:simpleType>
```
4 Overview of the IPMS RICS data standard

4.1 The IpmsMeasurement element

The IPMS RICS schema comprises a top-level element, IpmsMeasurement, which contains an IpmsMeta element.

Figure 1: The top-level element of the IPMS RICS schema, IpmsMeasurement
4.2 The IpmsMeta element

The IpmsMeta element contains details of the entity being measured and the process of how it was measured. At its simplest, this entity is an address – which may represent multiple measured properties – a reference identifier and an optional attribute – primaryUse – specifying the entity’s primary use (generally one of either Office, Residential, Industrial, Retail or MixedUse). Addresses are specified using the OASIS xAL address specification and can have a high level of flexibility. See chapter 7 for further information.

The IpmsMeta element can also contain the following information:

- who the measurement was prepared for (PreparedFor)
- who took the measurement (MeasuredBy)
- the instructed measurement date (InstructedMeasurementDate)
- the actual measurement date (MeasurementDate)
- the date the report was written (ReportDate)
- the methodology of the measurement (Methodology)
- the report status (ReportStatus) and
- the area unit of measure (AreaUnitOfMeasure). The AreaUnitOfMeasure element must contain a unit of measure, taken from the standard three-letter UN/CEFACT common codes. There may be multiple AreaUnitOfMeasure elements if a report has a requirement to specify a measurement in multiple units.
Figure 2: IpmsMetaType
4.3 The FloorPlan element

Located within the IpmsMeta and MeasuredProperty elements, the FloorPlan element refers to the floor plans that may be available, with additional details of the scale used (Scale) and a description of the plans (Description). The File element can contain files of the actual floor plans. Files may also be identified by the CreatedBy element, which may reference the person or company that generated the file. These floor plans exist at the IpmsMeta level to avoid the need to separate plans that feature many properties, should the measurement comprise multiple measurements.

Figure 3: The FloorPlan element

An AccuracyInMm element optionally enables the report to specify how accurately the measurement has been taken (+/- in mm). Permitted values have been derived from section 2.3, ‘Survey accuracy band table’, in Measured surveys of land, buildings and utilities (3rd edition), RICS guidance note, namely 5, 10, 25 or 50. It does also allow for other values should they be required.

4.4 The Compliance element

The Compliance element within IpmsMeta contains details of the individual(s) and organisation who prepared and certified the measurement. Additional elements include ConflictsOfInterestNotes, ConfidentialityNotes, DigitalSignature, TermsOfUse and OtherDocumentation, which provides the ability to add multiple files.

It should be noted that the DigitalSignature component of the standard allows for cryptographic signatures to be embedded within the standard to attest to the document’s authenticity. While there is no defined standard for how this element should be signed, it is considered best practice for the creator of the file to provide details on the signing process should this element be used.

The StatementOfProfessionalism element is used to document the firm or surveyor’s stance in respect to the RICS standards and guidance related to professionalism such as Conflicts of interest (1st edition), RICS professional statement. The associated link attribute supports a URI to direct readers to a statement defining compliance.
Figure 4: ComplianceType
4.5 The MeasuredProperty element

Each IpmsMeasurement element may contain multiple MeasuredProperty elements. This is to support entities such as shopping centres, which may contain more than one property to measure. Each MeasuredProperty element has a primaryUse attribute and a reference attribute, which is used to link to the FloorPlan element via its corresponding MeasuredProperty reference attribute. Floor plans are optional at this element level to prevent the necessity of splitting floor plans by building. The MeasuredProperty reference attribute is available at the FloorPlan element level so that a full set of floor plans at the IpmsMeasurement level can be provided and to facilitate cross-referencing.
Figure 5: MeasuredPropertyType
4.6 The Floors element

Floors is an optional element within the specification that supports the breakdown of measurements by floor levels within a building. If included in the document, Floors must contain at least one FloorLevel element of type FloorType.

4.7 The FloorLevels element

FloorLevels are identified by a combination of an identifier, id, which represents the floor number – such as ‘-1’ for a basement, ‘0’ for ground, ‘1’ for the first floor, etc. – and a label attribute, which can be used to give a local language identifier, such as ‘first floor’. Within the Floors element, there is a Description element to describe the general use of the floor.

Floor plans are optional at this element level to prevent the necessity of splitting floor plans by building floors. The MeasuredProperty reference attribute is available at the FloorPlan element level so that a full set of floor plans at the IpmsMeasurement and/or MeasuredProperty level can be provided and to facilitate cross-referencing.

Each floor level may optionally include elements that define the component areas within a given floor.
Figure 6: **FloorType**
4.8 The MeasuredComponents element

Components at floor level are identified by a Description element together with a reference attribute that may be used for other purposes. Components have a componentAreaType attribute (from ‘A’ to ‘H’) and may optionally be identified by a uniclassCategory attribute, which is taken from the Uniclass Spaces/locations list. The componentUsage attribute should be used to define whether the space is private or shared with other occupiers.

![Diagram of ComponentMeasurementType](image)

Figure 7: ComponentMeasurementType
5 Measurements in the data standard

5.1 IPMS and non-IPMS measurements

Measurements can be reported at different levels of granularity in the data standard:

- at summary level, as part of the overall `IpmsMeasurement` element
- at property level, as part of the `MeasuredProperty` element
- at floor level, as part of each `FloorLevel` element in `FloorType`
- at component level, as part of the `MeasuredComponents` element.

At each level of granularity, `IpmsMeasurementType` is used to capture IPMS 1 and IPMS 2 measurements, `Ipms3MeasurementType` to capture IPMS 3 measurements and `NonIpmsMeasurementType` to capture measurements made using other pre-existing local standards.

All summarised elements should be totals based on the measurements reported in the `MeasuredProperty`, `FloorLevel` and `MeasuredComponents` elements.

Figure 8: `IpmsMeasurementType`

At `FloorLevel`, IPMS: Industrial Buildings is supported by the elements `InternalHeight` and `ClearHeight`, which are expressed as simple decimal values of the primary measurement unit specified in the `LinearUnitOfMeasure` element within the `IpmsMeta` element.
5.2 IPMS3 measurements

`Ipms3MeasurementType` includes the `measurementSubtype` attribute to define the IPMS types, which are currently ‘3’ for office, ‘3A’, ‘3B’ and ‘3C’ for residential, ‘3A’ and ‘3B’ for industrial, and ‘3A’, ‘3B’ and ‘3C’ for retail. In addition, a list of one or more occupiers can be reported for each measured area.

![Figure 9: Ipms3MeasurementType](image)

Figure 9: `Ipms3MeasurementType`
5.3 Non-IPMS measurements

For non-IPMS Measurements, the attributes `standard` and `measurementBasis` describe the nature of the dual reporting, e.g. COMP6 and GIA.

Figure 10: NonIpmsMeasurementType
5.4 Areas reported separately

In addition to the reported MeasurementValue element, which is expressed as simple decimal values of the primary measurement unit specified in the AreaUnitOfMeasure element within the IpmsMeta element, data can be included to provide detailed information about:

- limited use areas
- areas included within IPMS (or other standards for non-IPMS measurements) but reported separately and
- areas excluded from IPMS (or other standards for non-IPMS measurements) but stated separately, if measured.

Figures 11–13: Types used to indicate areas reported separately
5.5 Alternative measurements

For each measurement type, the data standard supports an optional, additional, alternative unit of measurement, such as the number of vehicle spaces in an area used for parking, through the `AlternativeMeasurementType` element.

![Diagram showing `AlternativeMeasurementType` element]

Figure 14: AlternativeMeasurementType
6 File references

The data standard has the ability to refer to files. These files may be text files, PDF files or other proprietary binary files. Files may be referenced as either internal files or external files. The *InternalFile* element should be encoded with attributes detailing its encoding (encoding), file extension (format) and a description (description). Files may be referenced by a URL in the *href* attribute to indicate their location, for external files, or their original location, when stored as an internal file.

Figures 15–17: Referring to files using the data standards
7 Self-documenting schema

The schema contains multiple annotations, currently only in English, taken from RICS property measurement (2nd edition), RICS professional statement and IPMS: Residential Buildings, which document the use of various elements that are defined in the schema. For example:

```xml
<xs:complexType name="LimitedUseMeasurementType">
  <xs:annotation>
    <xs:documentation xml:lang="en">In certain markets there may be areas in buildings that are incapable of occupation in the light of government regulation or labour legislation. Such areas and their limitations are to be identified, measured and stated separately within IPMS reported areas. Users and third parties need to be aware that the inclusion of measured areas in IPMS does not mean the areas are available for legal occupation or use.
    </xs:documentation>
  </xs:annotation>
  <xs:sequence>
    <xs:element name="MeasurementValue" type="xs:decimal"/>
    <xs:element name="VolumeMeasurement" type="VolumeMeasurementType" minOccurs="0"/>
    <xs:element name="AlternativeMeasurement" type="AlternativeMeasurementType" minOccurs="0" maxOccurs="unbounded"/>
  </xs:sequence>
  <xs:attribute name="limitedUseCategory" type="LimitedUseCategoryType"/>
  <xs:attribute name="description" type="xs:string"/>
</xs:complexType>
```

Code block 2: Self-documenting schema

This documentation may be automatically extracted and presented in software applications and online documentation tools that utilise the schema.
8 Address types

With the use of the OASIS XML address specification (xAL), it is possible to define property addresses very precisely. The following examples, taken from the Oasis website, are valid xAL representations:

```
Level 12, 67 Albert Avenue
Chatswood
NSW 2067
Australia

<AddressDetails>
<AddressLines>
  <AddressLine>Level 12, 67 Albert Avenue</AddressLine>
  <AddressLine>Chatswood</AddressLine>
  <AddressLine>NSW 2067</AddressLine>
  <AddressLine>Australia</AddressLine>
</AddressLines>
</AddressDetails>
```

Code block 3: Example property address specification (basic)
Level 12, 67 Albert Avenue, Chatswood, NSW 2067
PO Box: 773, Chatswood, NSW 2057
Australia

<AddressDetails AddressType="Primary and Residential">
 <Country>
 <CountryName>Australia</CountryName>
 </Country>
 <AdministrativeArea>
 <AdministrativeAreaName>NSW</AdministrativeAreaName>
 </AdministrativeArea>
 <Locality>
 <LocalityName>Chatswood</LocalityName>
 <Thoroughfare Type="Street">
 <ThoroughfareNumber>67</ThoroughfareNumber>
 <ThoroughfareName>Archer Street</ThoroughfareName>
 </Thoroughfare>
 <Premise Type="Building">
 <BuildingName>Egis</BuildingName>
 <SubPremise Type="LEVEL">
 <SubPremiseNumber>12</SubPremiseNumber>
 </SubPremise>
 </Premise>
 </Locality>
 <PostalCode>
 <PostalCodeNumber>2067</PostalCodeNumber>
 </PostalCode>
</AddressDetails>

Code block 4: Example property address specification (intermediate)
9 Sample data file

A simple IPMS measurement would look as follows. This XML file is available as part of the released schema.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<ipms:IpmsMeasurement xmlns:ipms="urn:rics:xsdschema:ipms:2.1"
xmlns:rics="urn:rics:xsdschema:commonotypes:2.1"
xmlns:xal="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:rics:xsdschema:ipms:2.1 rics-ipms-2.1.xsd">
  <ipms:IpmsMeta>
    <rics:PreparedFor>Aura House Investments</rics:PreparedFor>
    <rics:Compliance>
      <rics:PreparedBy>Andrew Knight</rics:PreparedBy>
      <rics:CertifiedBy>Andrew Knight</rics:CertifiedBy>
    </rics:Compliance>
    <rics:ReportDate>2018-08-28</rics:ReportDate>
    <rics:ReportStatus>Final</rics:ReportStatus>
    <rics:ReportRevisionNumber>1</rics:ReportRevisionNumber>
    <rics:Methodology>Laser</rics:Methodology>
    <rics:Verification>measuredOnSite</rics:Verification>
    <rics:Entity primaryUse="Office">
      <rics:Description>Aura House</rics:Description>
      <xal:AddressDetails>
        <xal:AddressLines>
          <xal:AddressLine>1 High Street</xal:AddressLine>
        </xal:AddressLines>
      </xal:AddressDetails>
    </rics:Entity>
    <rics:AreaUnitOfMeasure scaleFactor="1" isPrimaryUnitMeasurement="true">MTK</rics:AreaUnitOfMeasure>
    <rics:AccuracyInMm>10</rics:AccuracyInMm>
    <rics:MeasuredBy>Andrew Knight</rics:MeasuredBy>
    <rics:InstructedMeasurementDate>2018-08-13</rics:InstructedMeasurementDate>
    <rics:MeasurementDate>2018-08-20</rics:MeasurementDate>
  </ipms:IpmsMeta>
  <ipms:MeasuredProperty primaryUse="Office">
    <rics:Floors>
      <rics:FloorLevel id="0" primaryUse="Office">
        <rics:Description>Office space</rics:Description>
        <rics:MeasuredComponents>
          <rics:ComponentMeasurement reference="Open plan office" uniclassCategory="Co_20_15_58" componentArea="G">
            <!-- Component Measurement Details -->
          </rics:ComponentMeasurement>
        </rics:MeasuredComponents>
      </rics:FloorLevel>
    </rics:Floors>
  </ipms:MeasuredProperty>
</ipms:IpmsMeasurement>
```
componentUsage="Private">
 <rics:Description>Ground floor office</rics:Description>
 <rics:Ipms2MeasuredArea>
 <rics:MeasurementValue>52</rics:MeasurementValue>
 </rics:Ipms2MeasuredArea>
 </rics:ComponentMeasurement>
 </rics:MeasuredComponents>
 <rics:Ipms1MeasuredFloorArea>
 <rics:MeasurementValue>52</rics:MeasurementValue>
 </rics:Ipms1MeasuredFloorArea>
 <rics:Ipms2MeasuredFloorArea>
 <rics:MeasurementValue>50</rics:MeasurementValue>
 </rics:Ipms2MeasuredFloorArea>
 <rics:Ipms3MeasuredFloorArea measurementSubtype="3">
 <rics:MeasurementValue>50</rics:MeasurementValue>
 </rics:Ipms3MeasuredFloorArea>
 </rics:Floors>
 <rics:Ipms1MeasuredArea>
 <rics:MeasurementValue>52</rics:MeasurementValue>
 </rics:Ipms1MeasuredArea>
 <rics:Ipms2MeasuredArea>
 <rics:MeasurementValue>50</rics:MeasurementValue>
 </rics:Ipms2MeasuredArea>
 <rics:Ipms3MeasuredArea measurementSubtype="3">
 <rics:MeasurementValue>50</rics:MeasurementValue>
 </rics:Ipms3MeasuredArea>
 </rics:IpmsMeasurement>
 </ipms:MeasuredProperty>
 <ipms:Ipms1MeasuredAreaSummary>
 <rics:MeasurementValue>52</rics:MeasurementValue>
 </ipms:Ipms1MeasuredAreaSummary>
 <ipms:Ipms2MeasuredAreaSummary>
 <rics:MeasurementValue>50</rics:MeasurementValue>
 </ipms:Ipms2MeasuredAreaSummary>
 <ipms:Ipms3MeasuredAreaSummary measurementSubtype="3">
 <rics:MeasurementValue>50</rics:MeasurementValue>
 </ipms:Ipms3MeasuredAreaSummary>
 </ipms:IpmsMeasurement>
Confidence through professional standards

RICS promotes and enforces the highest professional qualifications and standards in the valuation, development and management of land, real estate, construction and infrastructure. Our name promises the consistent delivery of standards – bringing confidence to markets and effecting positive change in the built and natural environments.

Americas

<table>
<thead>
<tr>
<th>Latin America</th>
<th>North America</th>
</tr>
</thead>
<tbody>
<tr>
<td>ricsameralatina@rics.org</td>
<td>ricsamericas@rics.org</td>
</tr>
</tbody>
</table>

Asia Pacific

<table>
<thead>
<tr>
<th>ASEAN</th>
<th>Greater China [Hong Kong]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ricsasean@rics.org</td>
<td>ricshk@rics.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Greater China [Shanghai]</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>ricschina@rics.org</td>
<td>ricsjapan@rics.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oceania</th>
<th>South Asia</th>
</tr>
</thead>
<tbody>
<tr>
<td>oceania@rics.org</td>
<td>ricsindia@rics.org</td>
</tr>
</tbody>
</table>

EMEA

<table>
<thead>
<tr>
<th>Africa</th>
<th>Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ricsafrica@rics.org</td>
<td>ricsc@rics.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ireland</th>
<th>Middle East</th>
</tr>
</thead>
<tbody>
<tr>
<td>ricsireland@rics.org</td>
<td>ricsmiddleeast@rics.org</td>
</tr>
</tbody>
</table>

United Kingdom RICS HQ
contactrics@rics.org

rics.org/datastandards

Chartered Surveyor™ is a trade mark of the Royal Institution of Chartered Surveyors.